CaV3.2 T-type channels mediate Ca²⁺ entry during oocyte maturation and following fertilization.

نویسندگان

  • Miranda L Bernhardt
  • Yingpei Zhang
  • Christian F Erxleben
  • Elizabeth Padilla-Banks
  • Caitlin E McDonough
  • Yi-Liang Miao
  • David L Armstrong
  • Carmen J Williams
چکیده

Initiation of mouse embryonic development depends upon a series of fertilization-induced rises in intracellular Ca(2+). Complete egg activation requires influx of extracellular Ca(2+); however, the channels that mediate this influx remain unknown. Here, we tested whether the α1 subunit of the T-type channel CaV3.2, encoded by Cacna1h, mediates Ca(2+) entry into oocytes. We show that mouse eggs express a robust voltage-activated Ca(2+) current that is completely absent in Cacna1h(-/-) eggs. Cacna1h(-/-) females have reduced litter sizes, and careful analysis of Ca(2+) oscillation patterns in Cacna1h(-/-) eggs following in vitro fertilization (IVF) revealed reductions in first transient length and oscillation persistence. Total and endoplasmic reticulum (ER) Ca(2+) stores were also reduced in Cacna1h(-/-) eggs. Pharmacological inhibition of CaV3.2 in wild-type CF-1 strain eggs using mibefradil or pimozide reduced Ca(2+) store accumulation during oocyte maturation and reduced Ca(2+) oscillation persistence, frequency and number following IVF. Overall, these data show that CaV3.2 T-type channels have prev8iously unrecognized roles in supporting the meiotic-maturation-associated increase in ER Ca(2+) stores and mediating Ca(2+) influx required for the activation of development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium signaling in mouse oocyte maturation: the roles of STIM1, ORAI1 and SOCE.

Calcium handling is critical for the oocyte function, since the first steps of fertilization are dependent on the appropriate Ca(2+) mobilization to originate transient spikes of the cytosolic Ca(2+) concentration. It is well known that the Ca(2+) influx from the extracellular milieu is required to maintain this signaling in mammalian oocytes. However, the regulation of the Ca(2+) channels invo...

متن کامل

Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation.

A transient increase in intracellular Ca(2+) is the universal signal for egg activation at fertilization. Eggs acquire the ability to mount the specialized fertilization-specific Ca(2+) signal during oocyte maturation. The first Ca(2+) transient following sperm entry in vertebrate eggs has a slow rising phase followed by a sustained plateau. The molecular determinants of the sustained plateau a...

متن کامل

Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition.

A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) ...

متن کامل

T-Type Ca2+ Current Activity during Oocyte Growth and Maturation in the Ascidian Styela plicata

Voltage-dependent calcium currents play a fundamental role during oocyte maturation, mostly L-type calcium currents, whereas T-type calcium currents are involved in sperm physiology and cell growth. In this paper, using an electrophysiological and pharmacological approach, we demonstrated, for the first time in oocytes, that T-type calcium currents are present with functional consequences on th...

متن کامل

Mitochondrial Ca2+ Uptake from Plasma Membrane Cav3.2 Protein Channels Contributes to Ischemic Toxicity in PC12 Cells*

T-type Ca(2+) channel inhibitors protect hippocampal CA1 neurons from delayed death after global ischemia in rats, suggesting that Cav3.1, Cav3.2, or Cav3.3 channels generate cytotoxic Ca(2+) elevations during anoxia. To test this hypothesis, we measured the Ca(2+) concentration changes evoked by oxygen and glucose deprivation (OGD) in the cytosol and in the mitochondria of PC12 cells. OGD evok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 128 23  شماره 

صفحات  -

تاریخ انتشار 2015